亚洲制服欧美另类-午夜激情av电影-日本高清中文字幕一区二区三区-中国欧美日韩一区二区三区-欧洲亚洲日本韩国-成人欧美激情一区二区-亚洲偷偷自拍高清

掃碼關(guān)注公眾號(hào)           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  關(guān)于我們  聯(lián)系我們
亚洲成AV人片在线观看WV,老妇又粗又大舒服极了
首頁(yè) > 產(chǎn)品中心 > 一抗 > 產(chǎn)品信息
Smad3 Rabbit pAb (bs-3484R)  
訂購(gòu)熱線:400-901-9800
訂購(gòu)郵箱:sales@bioss.com.cn
訂購(gòu)QQ:  400-901-9800
技術(shù)支持:techsupport@bioss.com.cn
50ul/1180.00元
100ul/1980.00元
200ul/2800.00元
大包裝/詢價(jià)

產(chǎn)品編號(hào) bs-3484R
英文名稱 Smad3 Rabbit pAb
中文名稱 細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)分子SMAD3抗體
別    名 hMAD 3; hSMAD3; HSPC193; JV15 2; JV152; MAD(mothers against decapentaplegic Drosophila) homolog 3; MAD3; MADH 3; MADH3; Mothers against decapentaplegic homolog 3; Mothers against DPP homolog 3; SMA and MAD related protein 3; SMAD 3; SMAD; SMAD-3; SMAD3_HU  
Specific References  (33)     |     bs-3484R has been referenced in 33 publications.
[IF=6.388] Yu-jie Lu. et al. Ligustilide attenuates airway remodeling in COPD mice by covalently binding to MH2 domain of Smad3 in pulmonary epithelium, disrupting the Smad3-SARA interaction. PHYTOTHER RES. 2022 Oct;:  IF, IHC ;  Mouse,Human.  
[IF=6.1] Cuifang Chang. et al. The orphan GPR50 receptor interacting with TβRI induces G1/S-phase cell cycle arrest via Smad3-p27/p21 in BRL-3A cells. BIOCHEM PHARMACOL. 2022 Aug;202:115117  WB ;  Rat.  
[IF=5.895] Guangning Kou. et al. Sesamin Activates Skeletal Muscle FNDC5 Expression and Increases Irisin Secretion via the SIRT1 Signaling Pathway. J AGR FOOD CHEM. 2022;XXXX(XXX):XXX-XXX  WB ;  Mouse.  
[IF=5.846] Yifan Zhang. et al. MiR-208b/miR-21 Promotes the Progression of Cardiac Fibrosis Through the Activation of the TGF-β1/Smad-3 Signaling Pathway: An in vitro and in vivo Study. FRONT CARDIOVASC MED. 2022; 9: 924629  WB ;  Rat.  
[IF=5.714] Han B et al. Deltamethrin induces liver fibrosis in quails via activation of the TGF-β1/Smad signaling pathway. Environ Pollut. 2019 Dec 23;259:113870.  WB ;  quail.  
[IF=5.589] Lv Y et al. Imidacloprid-induced liver fibrosis in quails via activation of the TGF-β1/Smad pathway. Sci Total Environ. 2019 Dec 6;705:135915.  WB ;  Quail.  
[IF=5.068] Chen XY et al. Pulsed Magnetic Field Stimuli Can Promote Chondrogenic Differentiation of Superparamagnetic Iron Oxide Nanoparticles-Labeled Mesenchymal Stem Cells in Rats.(2018) J Biomed Nanotechnol. 14(12):2135-2145.  WB ;  Rat.  
[IF=4.545] Han X et al. The intervention effect of nicotine on cervical fibroblast-myofibroblast differentiation in lipopolysaccharide-induced preterm birth model through activating the TGF-β1/Smad3 pathwayBiomed Pharmacother.2020 Dec 24;134:111135.  WB ;  Mouse.  
[IF=4.42] Gao, Lili, et al. "Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats." Frontiers in pharmacology 6 (2015).  WB ;  Rat.  
[IF=4.225] Yang Fan. et al. Catalpol Protects Against Pulmonary Fibrosis Through Inhibiting TGF-β1/Smad3 and Wnt/β-Catenin Signaling Pathways. Front Pharmacol. 2021 Jan;11:2472  WB,IHC ;  Rat.  
[IF=4.171] Yi Chen. et al. The essential oil from the raw and vinegar processed Rhizoma Curcumae ameliorate CCl4-incuded liver fibrosis: integrating network pharmacology and molecular mechanism evaluation. 2021 Mar 17  WB ;  Rat.  
[IF=4.096] Weimin Lin. et al. SESN3 Inhibited SMAD3 to Relieve Its Suppression for MiR-124, Thus Regulating Pre-Adipocyte Adipogenesis. Genes-Basel. 2021 Dec;12(12):1852  IP ;  Pig.  
[IF=3.819] Wu L et al. Intragastric administration of dahuang zhechong pill modulates TGF-β1/smad signaling pathway in murine model of experimental silicosis.  WB ;  mouse.  
[IF=3.571] Zheng HX et al. Cyanidin-3-glucoside from Black Rice Ameliorates Diabetic Nephropathy via Reducing Blood Glucose, Suppressing Oxidative Stress and Inflammation, and Regulating Transforming Growth Factor β1/Smad Expression. J Agric Food Chem. 2020 Apr 15;68(15):4399-4410.  IHC-P ;  Rat.  
[IF=3.342] Feng Wang. et al. Metformin reduces myogenic contracture and myofibrosis induced by rat knee joint immobilization via AMPK-mediated inhibition of TGF-β1/Smad signaling pathway. CONNECT TISSUE RES. 2022 Jun 20  WB ;  Rat.  
[IF=3.13] Zhang, Wen-feng, et al. "Angelica polysaccharides inhibit the growth and promote the apoptosis of U251 glioma cells in vitro and in vivo." Phytomedicine (2017).  WB ;  Human.  
[IF=3.082] Fei Yin. et al. Effect of Human Umbilical Cord Mesenchymal Stem Cells Transfected with HGF on TGF-β1/Smad Signaling Pathway in Carbon Tetrachloride-Induced Liver Fibrosis Rats. Stem Cells Dev. 2020 Oct;29(21):1395-1406  IHC ;  Rat.  
[IF=3.06] Yan Y et al. Inhibition of TGF-β Signaling in Gliomas by the Flavonoid Diosmetin Isolated from Dracocephalum peregrinum L. Molecules. 2020 Jan 2;25(1). pii: E192.  WB ;  Human.  
[IF=3.03] Zhou et al. Effects of Zearalenone Exposure on the TGF-β1/Smad3 Signaling Pathway and the Expression of Proliferation or Apoptosis Related Genes of Post-Weaning Gilts. (2018) Toxins.(Basel). 10  WB ;  Porcine.  
[IF=2.82] Wang et al. Epigallocatechin-3-gallate attenuates unilateral ureteral obstruction-induced renal interstitial fibrosis in mice. (2015) J.Histochem.Cytochem. 63:270-9  WB ;  Mouse.  
[IF=2.81] Hu et al. Hydroxysafflor Yellow A Ameliorates Renal Fibrosis by Suppressing TGF-β1-Induced Epithelial-to-Mesenchymal Transition. (2016) PLoS.On. 11:e0153409  WB ;  Mouse.  
[IF=2.73] Wahsh, Eman, et al. "The vitamin D receptor agonist, Calcipotriol, modulates fibrogenic pathways mitigating liver fibrosis in-vivo: An experimental study."European Journal of Pharmacology (2016).  IHC-P ;  Mouse.  
[IF=2.728] Xijuan Liu et al. Chondrocyte suppression is mediated by miR‐129‐5p via GDF11/SMAD3 signaling in developmental dysplasia of the hip. J Orthop Res. 2020 Dec;38(12):2559-2572.  WB/IHC ;  Rabbit.  
[IF=2.66] Wang et al. Effects of Tongxinluo on myocardial fibrosis in diabetic rats. (2016) J.Chin.Med.Assoc. 79:130-6  IHC ;  Rat.  
[IF=2.65] Wu Zhiqiang. et al. Jinlian Xiaodu Decoction Protects against Bleomycin-Induced Pulmonary Fibrosis in Rats. EVID-BASED COMPL ALT. 2022;2022:4206364  WB ;  Rat.  
[IF=2.63] Zhang Peng. et al. Study on the Mechanism of Bu-Shen-He-Mai Granules in Improving Renal Damage of Ageing Spontaneously Hypertensive Rats by Regulating Th17 Cell/Tregs Balance. EVID-BASED COMPL ALT. 2022;2022:8315503  WB ;  Rat.  
[IF=2.571] Tang et al. Salidroside protects against bleomycin-induced pulmonary fibrosis: activation of Nrf2-antioxidant signaling, and inhibition of NF-κB and TGF-β1/Smad-2/-3 pathways. (2016) Cell.Stress.Chaperones. 21:239-49  WB ;  Rat.  
[IF=2.35] Liu, Yanhua, et al. "RUNX3 modulates hypoxia-induced endothelial-to-mesenchymal transition of human cardiac microvascular endothelial cells." International Journal of Molecular Medicine (2017).  WB ;  Human.  
[IF=2.34] Zhou et al. Induced pluripotent stem cell-conditioned medium suppresses pulmonary fibroblast-to-myofibroblast differentiation via the inhibition of TGF-β1/Smad pathway. (2018) Int.J.Mol.Med. 41:473-484  WB ;  Human.  
[IF=2.014] Sheng-Nan ZHOU. et al. Early intervention with Di-Dang Decoction prevents macrovascular fibrosis in diabetic rats by regulating the TGF-β1/Smad signalling pathway. Chin J Nat Medicines. 2020 Aug;18:612  WB ;  Rat.  
研究領(lǐng)域 腫瘤  細(xì)胞生物  免疫學(xué)  信號(hào)轉(zhuǎn)導(dǎo)  干細(xì)胞  細(xì)胞凋亡  生長(zhǎng)因子和激素  轉(zhuǎn)錄調(diào)節(jié)因子  
抗體來(lái)源 Rabbit
克隆類型 Polyclonal
交叉反應(yīng) Human,Mouse,Rat,Pig (predicted: Cow,Chicken)
產(chǎn)品應(yīng)用 WB=1:500-2000,IHC-P=1:100-500,IHC-F=1:100-500,IF=1:100-500,Flow-Cyt=1ug/Test,ICC/IF=1:100
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
理論分子量 47 kDa
檢測(cè)分子量
細(xì)胞定位 細(xì)胞核 細(xì)胞漿 
性    狀 Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human Smad3: 31-80/425 
亞    型 IgG
純化方法 affinity purified by Protein A
緩 沖 液 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.
保存條件 Shipped at 4℃. Store at -20℃ for one year. Avoid repeated freeze/thaw cycles.
注意事項(xiàng) This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
PubMed PubMed
產(chǎn)品介紹 Smad3 is a 50 kDa member of a family of proteins that act as key mediators of TGF beta superfamily signaling in cell proliferation, differentiation and development. The Smad family is divided into three subclasses: receptor regulated Smads, activin/TGF beta receptor regulated (Smad2 and 3) or BMP receptor regulated (Smad 1, 5, and 8); the common partner, (Smad4) that functions via its interaction to the various Smads; and the inhibitory Smads, (Smad6 and 7). Activated Smad3 oligomerizes with Smad4 upon TGF beta stimulation and translocates as a complex into the nucleus, allowing its binding to DNA and transcription factors. Phosphorylation of the two TGF beta dependent serines 423 and 425 in the C terminus of Smad3 is critical for Smad3 transcriptional activity and TGF beta signaling.

Function:
Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD3/SMAD4 complex, activates transcription. Also can form a SMAD3/SMAD4/JUN/FOS complex at the AP-1/SMAD site to regulate TGF-beta-mediated transcription. Has an inhibitory effect on wound healing probably by modulating both growth and migration of primary keratinocytes and by altering the TGF-mediated chemotaxis of monocytes. This effect on wound healing appears to be hormone-sensitive. Regulator of chondrogenesis and osteogenesis and inhibits early healing of bone fractures (By similarity). Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.

Subunit:
Monomer; in the absence of TGF-beta. Homooligomer; in the presence of TGF-beta. Heterotrimer; forms a heterotrimer in the presence of TGF-beta consisting of two molecules of C-terminally phosphorylated SMAD2 or SMAD3 and one of SMAD4 to form the transcriptionally active SMAD2/SMAD3-SMAD4 complex. Interacts with TGFBR1. Part of a complex consisting of AIP1, ACVR2A, ACVR1B and SMAD3. Interacts with AIP1, TGFB1I1, TTRAP, FOXL2, PML, PRDM16, HGS and WWP1. Interacts (via MH2 domain) with CITED2 (via C-terminus) (By similarity). Interacts with NEDD4L; the interaction requires TGF-beta stimulation (By similarity). Interacts (via the MH2 domain) with ZFYVE9. Interacts with HDAC1, VDR, TGIF and TGIF2, RUNX3, CREBBP, SKOR1, SKOR2, SNON, ATF2, SMURF2 and TGFB1I1. Interacts with DACH1; the interaction inhibits the TGF-beta signaling. Forms a complex with SMAD2 and TRIM33 upon addition of TGF-beta. Found in a complex with SMAD3, RAN and XPO4. Interacts in the complex directly with XPO4. Interacts (via the MH2 domain) with LEMD3; the interaction represses SMAD3 transcriptional activity through preventing the formation of the heteromeric complex with SMAD4 and translocation to the nucleus. Interacts with RBPMS. Interacts (via MH2 domain) with MECOM. Interacts with WWTR1 (via its coiled-coil domain). Interacts (via the linker region) with EP300 (C-terminal); the interaction promotes SMAD3 acetylation and is enhanced by TGF-beta phosphorylation in the C-terminal of SMAD3. This interaction can be blocked by competitive binding of adenovirus oncoprotein E1A to the same C-terminal site on EP300, which then results in partially inhibited SMAD3/SMAD4 transcriptional activity. Interacts with SKI; the interaction represses SMAD3 transcriptional activity. Component of the multimeric complex SMAD3/SMAD4/JUN/FOS which forms at the AP1 promoter site; required for syngernistic transcriptional activity in response to TGF-beta. Interacts (via an N-terminal domain) with JUN (via its basic DNA binding and leucine zipper domains); this interaction is essential for DNA binding and cooperative transcriptional activity in response to TGF-beta. Interacts with PPM1A; the interaction dephosphorylates SMAD3 in the C-terminal SXS motif leading to disruption of the SMAD2/3-SMAD4 complex, nuclear export and termination of TGF-beta signaling. Interacts (dephosphorylated form via the MH1 and MH2 domains) with RANBP3 (via its C-terminal R domain); the interaction results in the export of dephosphorylated SMAD3 out of the nucleus and termination of the TGF-beta signaling. Interacts with MEN1. Interacts with IL1F7. Interaction with CSNK1G2. Interacts with PDPK1 (via PH domain).

Subcellular Location:
Cytoplasm. Nucleus. Note=Cytoplasmic and nuclear in the absence of TGF-beta. On TGF-beta stimulation, migrates to the nucleus when complexed with SMAD4. Through the action of the phosphatase PPM1A, released from the SMAD2/SMAD4 complex, and exported out of the nucleus by interaction with RANBP1. Co-localizes with LEMD3 at the nucleus inner membrane. MAPK-mediated phosphorylation appears to have no effect on nuclear import. PDPK1 prevents its nuclear translocation in response to TGF-beta.

Post-translational modifications:
Phosphorylated on serine and threonine residues. Enhanced phosphorylation in the linker region on Thr-179, Ser-204 and Ser-208 on EGF AND TGF-beta treatment. Ser-208 is the main site of MAPK-mediated phosphorylation. CDK-mediated phosphorylation occurs in a cell-cycle dependent manner and inhibits both the transcriptional activity and antiproliferative functions of SMAD3. This phosphorylation is inhibited by flavopiridol. Maximum phosphorylation at the G(1)/S junction. Also phosphorylated on serine residues in the C-terminal SXS motif by TGFBR1 and ACVR1. TGFBR1-mediated phosphorylation at these C-terminal sites is required for interaction with SMAD4, nuclear location and transactivational activity, and appears to be a prerequisite for the TGF-beta mediated phosphorylation in the linker region. Dephosphorylated in the C-terminal SXS motif by PPM1A. This dephosphorylation disrupts the interaction with SMAD4, promotes nuclear export and terminates TGF-beta-mediated signaling. Phosphorylation at Ser-418 by CSNK1G2/CK1 promotes ligand-dependent ubiquitination and subsequent proteasome degradation, thus inhibiting SMAD3-mediated TGF-beta responses. Phosphorylated by PDPK1.
Acetylation in the nucleus by EP300 in the MH2 domain regulates positively its transcriptional activity and is enhanced by TGF-beta.
Ubiquitinated.

DISEASE:
Defects in SMAD3 may be a cause of colorectal cancer (CRC) [MIM:114500].
Defects in SMAD3 are the cause of Loeys-Dietz syndrome type 1C (LDS1C) [MIM:613795]. LDS1C is an aortic aneurysm syndrome with widespread systemic involvement. The disorder is characterized by the triad of arterial tortuosity and aneurysms, hypertelorism, and bifid uvula or cleft palate. Patients with LDS1C also manifest early-onset osteoarthritis. They lack craniosynostosis and mental retardation.

Similarity:
Belongs to the dwarfin/SMAD family.
Contains 1 MH1 (MAD homology 1) domain.
Contains 1 MH2 (MAD homology 2) domain.

SWISS:
P84022

Gene ID:
4088

Database links:

Entrez Gene: 4088 Human

Entrez Gene: 17127 Mouse

Entrez Gene: 25631 Rat

Omim: 603109 Human

SwissProt: P84022 Human

SwissProt: Q8BUN5 Mouse

SwissProt: P84025 Rat

Unigene: 727986 Human

Unigene: 7320 Mouse

Unigene: 10636 Rat



產(chǎn)品圖片
Sample: Lane 1: Cerebrum (Mouse) Lysate at 40 ug Lane 2: Heart (Mouse) Lysate at 40 ug Lane 3: Testis (Mouse) Lysate at 40 ug Lane 4: Skin (Mouse) Lysate at 40 ug Lane 5: Kidney (Mouse) Lysate at 40 ug Lane 6: Cerebrum (Rat) Lysate at 40 ug Lane 7: Testis (Rat) Lysate at 40 ug Lane 8: Kidney (Rat) Lysate at 40 ug Lane 9: Huvec (Human) Cell Lysate at 30 ug Lane 10: A549 (Human) Cell Lysate at 30 ug Lane 11: Hela (Human) Cell Lysate at 30 ug Lane 12: HT1080 (Human) Cell Lysate at 30 ug Lane 13: A431 (Human) Cell Lysate at 30 ug Primary: Anti-Smad3 (bs-3484R) at 1/1000 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 52 kD Observed band size: 54 kD
Sample: Cerebrum (Mouse) Lysate at 40 ug Ovary (Mouse) Lysate at 40 ug HT1080 (Human) Cell Lysate at 30 ug Jurkat (Human) Cell Lysate at 30 ug Primary: Anti- Smad3 (bs-3484R) at 1/1000 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 52 kD Observed band size: 60 kD
Tissue/cell: mouse lymphoma tissue; 4% Paraformaldehyde-fixed and paraffin-embedded; Antigen retrieval: citrate buffer ( 0.01M, pH 6.0 ), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum,C-0005) at 37℃ for 20 min; Incubation: Anti-Smad3 Polyclonal Antibody, Unconjugated(bs-3484R) 1:200, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining
Hela cell; 4% Paraformaldehyde-fixed; Triton X-100 at room temperature for 20 min; Blocking buffer (normal goat serum, C-0005) at 37°C for 20 min; Antibody incubation with (Smad3) polyclonal Antibody, Unconjugated (bs-3484R) 1:100, 90 minutes at 37°C; followed by a conjugated Goat Anti-Rabbit IgG antibody at 37°C for 90 minutes, DAPI (blue, C02-04002) was used to stain the cell nuclei.
Blank control: Hela. Primary Antibody (green line): Rabbit Anti-Smad3 antibody (bs-3484R) Dilution: 1μg /10^6 cells; Isotype Control Antibody (orange line): Rabbit IgG . Secondary Antibody : Goat anti-rabbit IgG-AF647 Dilution: 1μg /test. Protocol The cells were fixed with 4% PFA (10min at room temperature)and then permeabilized with 90% ice-cold methanol for 20 min at -20℃. The cells were then incubated in 5%BSA to block non-specific protein-protein interactions for 30 min at room temperature .Cells stained with Primary Antibody for 30 min at room temperature. The secondary antibody used for 40 min at room temperature. Acquisition of 20,000 events was performed.
Blank control (Black line): HUVEC (Black). Primary Antibody (green line): Rabbit Anti-Smad3 antibody (bs-3484R) Dilution: 1μg /10^6 cells; Isotype Control Antibody (orange line): Rabbit IgG . Secondary Antibody (white blue line): Goat anti-rabbit IgG-AF647 Dilution: 1μg /test. Protocol The cells were fixed with 4% PFA (10min at room temperature)and then permeabilized with 90% ice-cold methanol for 20 min at room temperature. The cells were then incubated in 5%BSA to block non-specific protein-protein interactions for 30 min at room temperature .Cells stained with Primary Antibody for 30 min at room temperature. The secondary antibody used for 40 min at room temperature. Acquisition of 20,000 events was performed.
版權(quán)所有 2004-2026 m.a6308.cn 北京博奧森生物技術(shù)有限公司
通過(guò)國(guó)際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號(hào): 00124Q34771R2M/1100
通過(guò)國(guó)際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號(hào): CQC24QY10047R0M/1100
京ICP備05066980號(hào)-1         京公網(wǎng)安備110107000727號(hào)
亚洲欧美卡通动漫丝袜 | 精品卡一卡二卡3卡高清乱码 | 国产一区二区视频在线观看 | 国产中文在线观看 | 欧洲美女人**一级毛片 | 小宝极品内射国产在线 | 国产人成无码视频在线1000 | 欧美性大战xxxxx久久久 | 国产中文字幕一区 | 人妻少妇精品无码专区喷水 | 欧美精品国产一区二区免费 | 婷婷国产精品久久久久精 | 夜里十大禁用短视频软件 | 国产日韩亚洲VA无码自线免费看不卡 | 最新国产精品自在自线发布 | 精品久久久久久无码中文字幕动漫 | 精品精品国产三级A∨在线 **色毛片免费观看 色欲日本人妻久久久久久综合 | 久久久久99精品成人片牛牛影视 | 日韩人欧美?片内射∵久久中国 | 欧美综合自拍亚洲综合图 | 欧美熟妇呻吟猛交XX性 | 无码人妻一区二区三区在线 | 成年必看视频在线观看 | 亚洲国产精品无码久久久久久曰 | 18禁无遮挡羞羞污污污污免费 | 洗澡被公强奷30分钟在线观看 | 后进女神白嫩翘臀在线视频 | 亚洲av日韩综合一区 | 又湿又紧又大又爽又A视频 一二三四社区在线中文视频 | 24小时在线观看视频免费 | 99国精品午夜福利视频不卡 | 韩剧《空洞》在线观看 | 日韩欧美中文字幕一区 | 国产日产欧美一区二区蜜桃 | 亚洲专区无码天堂中文字幕 | 原神胡桃开襟乳液狂飙 | 国产乱码精品一区二区三区中文 | 亚洲日韩在线观看 | 搡的我好爽视频在线观看 | 女人脱精光让人桶爽了 | 久久毛片免费看一区二区三区 |